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although the state trajectories, in general, were different. Each case
was run 50 times and the ensemble averages were approximated by
the numerical average of these 50 trials. In all cases the weighting
coefficients for the control effort {B;} are unity, and the process
noise variance is constant, but varies from case to case.

Numerical Results

The results of a seven stage stochastic process are described.
Quantitative results are displayed for a terminal control problem,
and the results of other simulations are discussed.

Terminal Control: In the terminal control problem, all state
weighting coefficients are unity except the last one 4; which is 100.
This means, roughly, that the rms terminal error is ten times more
important than the other quantities in the cost function.

Fig. 2 shows the results when the measurements are taken through
a three level quantizer: the ensemble mean-square state and ensemble
average of the (approximate) conditional covariance of the state are
plotted as a function of time. For this case, the variance of the
process noise is 0.2, and the quantizer switeh points are at ==1.

The most noticeable difference between the two control laws is
that the one-measurement control acts to reduce the conditional
covariance of the state estimate. Note that the ensemble average of
the conditional covariance is about half the average of the condi-
tional covariance for the open-loop control. The one-measurement
control is able to reduce the conditional covariance by centering the
conditional distribution of the measurement near the quantizer
switch point, where a more accurate measurement can be obtained.
This strategy is reflecied in the curves for the mean-square value of
the state which stays in the neighborhood of 1.0 (the switch point)
for the one-measurement control but gradually goes to zero for the
open-loop control. The control effort (not shown) for the one-
measurement control is higher, and it requires a large control action
at the last application to bring the state from the vieinity of the
quantizer switch point to the origin.

The performance penalty of the open-loop-optimal feedback
control over the one-measurement-optimal feedback control is 17.5
pereent for this case. Other simulations revealed that the perfor-
mance penalty ranged as high as 44 percent when observations were
taken through a two level quantizer.

Other Simulations: Cost functions other than the terminal control
type were simulated: the state deviations were weighted more
heavily as time progressed, or else the weightings were constant.
The performance advantage of the one-measurement control was
always less than 10 percent in these cases. This arises from the fact
that the one-measurement control tries to move the state around to
gain information, buf these movements are restricted by the rela-
tively heavy weighting on the state deviations.

Thus a qualitative assessment, at least for linear systems and
nonlinear measurements, is that incorporating future measurements
in the control computations will yield the greatest return when the
cost function is such that the state and/or control is free to reduce
uncertainty in the estimate. In other situations, the open-loop
control is quite attractive, especially because of its computational
simplicity.

V. CoNCLUSIONS

A new suboptimal stochastic control algorithm is presented which
ineorporates future measurments into the control computations.
The two limiting forms of the algorithm are the well-known open-
loop-optimal feedback control and the truly optimal stochastic
control. This concept can be extended to simplify the computations
for constrained controls, nonlinear plants, and nonquadratic cost
criteria. A linear system with quantized measurements was simulated
to compare the one-measurement-optimal feedback control to the
open-loop-optimal feedback control. The greatest improvement over
the open-loop algorithm occurs in those situations where the cost
function gives the control and state some freedom to reduce the
uncertainty in the state estimate.
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Control of an Amplifying Wave
on an Infinite Continuum

JOSEPH M. CROWLEY, MEMBER, IEEE

Abstract—Previous work on the space-sampled feedback control
of continuum instabilities in flowing systems is extended. When
the continuum over which control is desired is many wavelengths
long, it is often convenient to construct the control system of many
sampling stations, each approximately one wavelength in size. The
stability of such a system is discussed, and a new type of instability
is found which does not appear when the system is small in terms of a
wavelength.

Many systems described by wave equations, such as, boundary
layers [1], confined fusion plasmas [2], and liquid jets [3], are
subject to various types of instabilities under their normal operating
conditions. Since these instabilities are often destructive, much
effort has been expended in devising methods for improving the
stability of these systems without sacrificing operating performance.
A promising approach to this problem is space-sampled feedback
control, in which the disturbances leading to instability are sampled
over the entire spatial extent of the system, and spatially distributed
forces are applied to attenuate these disturbances.

Continuum systems which satisfy wave eguations may be de-
scribed as spacelike or timelike [4]. In a spacelike system, waves
may propagate in all directions, so that an instability once started,
will eventually spread throughout the entire system. Such insta-
bilities are often called absolute or nonconvective. The feedback
stabilization of these instabilities in electromechanical systems and
in plasmas has recently been reported in some detail [5]-{10].

In a timelike system, however, waves can propagate only in pre-
ferred directions. Physically, this situation usually arises when there
is mechanical motion at speeds greater than the velocity of wave
propagation. Common examples are supersonic flight and traveling
wave amplifiers.

The instabilities which arise in timelike systems are called amplify-
ing waves or convective instabilities. A previous paper [11] discussed
the feedback control of an amplifying wave over a short distance,
and reported an experimental attenuation of a disturbance which
normally exhibits significant growth over a distance of a few wave-
lengths. In many cases of practical interest, however, significant
growth of the instability occurs only on a system which is many
wavelengths long. A successful control system requires that a
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Fig. 1. Schematic representation of single sampling station in which distur-
bance measured at single point controls corrective force over entire length of
section.

band of spatial frequencies be measurable and controllable. One
way to satisfy this condition is to make each section shorter than a
single wave length. Since this approach requires a large number of
sampling stations, the present paper extends the results of [11] to
cover space-sampled feedback on a system many wavelengths in
extent.

I. System EqQuaTIONS

The system studied in [11], a liquid jet subject to a radial
electric field, was chosen because it could be modeled quite well by a
relatively simple wave equation which is representative of most time-
like systems, and because it could be easily produced in the lab-
oratory.

In the absence of feedback, the liquid jet can be deseribed by the
nondimensional equation [11]

O L0 W

<6t + a:;) =« o + A8, 1)
The term on the left accounts for the inertia of the jet while the
terms on the right represent the restoring force of surface tension
(a?) and a destabilizing force proportional {o displacement, due to the
electric pressure (N} on the surface. The quantity & here represents
the amplitude of the disturbance on the jet, and 2 and ¢ are real
space and time variables.

If the velocity of the jet is greater than the wave propagation
velocity (e < 1), this system is timelike and exhibits amplifying
waves which have been discussed elsewhere in detail [3], [12]. In
the work reported in [11], these amplifying waves were controlled
by measuring the disturbances at discrete points and applying a
uniform correcting force to the jet in the neighborhood of each of
these points. The feedback system can, therefore, be treated as a
series of independent sampling sections which are individually
represented by Fig. 1.

If the sampled feedback foree is included, the nondimensional
equation which describes the system within each section is [11]

2 2
(‘3 + ﬁ) 5z0) = a0 2200 | Nsmn) — Moo = ) (2)
ot or ar?

where M is the feedback gain, and @ is the sampling point.

Since this is a one-dimensional timelike system, all disturbances
propagate in only one direction (the direction in which the jet moves
downstream). The boundary conditions which influence the dis-
turbance must therefore be applied at the upstream end of each
sampling section, because disturbances applied at the downstream
side would propagate farther downstream and never convey infor-
mation into the section. These conditions are analogous to initial
conditions which affect the behavior of the system only for times
after the time of application. The disturbance generated by these
entrance conditions is then carried through the section to the down-
stream end where it serves as the upstream boundary condition for
the succeeding section. The system is convectively unstable if
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the magnitude of the disturbance grows without bound as it is swept
downstream from section to section; however, the magnitude at
any fixed point remains bounded.

The sinusoidal steady state disturbance at the outlet of the nth
section is given by successive solutions of the wave equation [11] in
terms of the initial disturbance

& = 8(z = 0,f) (3)
and its spatial derivative
5 , _ 350(:1? = O,t>
o —-6-1:_ 4)
as
Or An Ap |? 8o
= (3)
5n' 44‘71 4422 60,
where

Kdn = vye(l)e(l) — ge(ale(a) + de[vs(1)e(1) — Bs(ale(a)]
KA = vs(1)e(1) — Bls(a)e(a) + s(1 — ade(1l + a)]
KAsy = y(k:? + k2)s(1)e(1)
KA = ye(1)e(1) — Be(1 — ade(l + a) — ik [vs(1)e(1)
= Bs(1 — ade(l + a)]

and
K =1 - g{lela) + iks(@)ea) — 1}
8 =M/ + o)
¥ =1+5

e(z) = exp (—zikx)
c(z) = cosh kir
s(z) = (sinh kur)/k;

ke = w/(1 — «?)

VNI = o) — (aw)?/(1 — a?).

>
I

II. TuE StaBrity CRITERION

The nature of the response far from the point of excitation can
be determined by considering the limit of (5) as n becomes very
large. If the response is bounded, this limit must be bounded. The
nature of the limiting response can be determined most easily by
transforming the transfer matrix to its canonical form

M O
0 A
where A satisfies the equation

An->r Ap
= 0. (6)

Ao Aar 2

If the magnitude of either eigenvalue is greater than unity, the
limiting response, which is proportional to the eigenvalues raised to
a very large power, will be unbounded. The condition for spatial
stability of the jet is then

In <1

n] < 1.



538

A special case is the uncontrolled jet (M = 0) excited by a constant
disturbance. The response matrix under these conditions is

cosh k; sinh k:/k:

k: sinh &; cosh k;

In canonical form, this matrix may be written
¢ 0
0 e™

This represents the growing and decaying waves normally found on
the jet. For a real value of k;, one of the eigenvalues will be greater
than unity, indicating spatial instability. Thus this new criterion is
identical to the usual stability criterion for timelike systems based
on the dispersion relation of the free waves, and given by (8], [9]

k; = 0. (8)

ITI. SPATIAL INSTABILITIES WITH SAMPLED FEEDBACK

To delimit the stable operating range, we choose appropriate
values of the parameters @, «, N, and M, and evaluate the eigen-
values of the response matrix for all frequencies. If neither eigen-
value attains a magnitude greater than unity, the chosen operating
point lies in the stable region. By repeating this procedure at different
operating points, a stable operating region in the M-V plane can be
mapped out for each value of ¢ and «.

Amplifying Wave

The preceding search procedure has revealed three types of spatial
instabilities on the feedback controlled jet. The first is the growing
wave normally present on the jet. The growth rate of this disturbance
is largest at low frequencies, and vanishes as the frequency is raised
above a definite cutoff frequency given by

o VN - o) ©)

To control this instability, the feedback system must furnish a
restoring force over the frequency range

0 < o< oy (10)

with sufficient amplitude to counteract the growth. A plot of the
feedback gain needed to overcome the growing wave for different
growth rates (Fig. 2) shows that the condition for stability is very
nearly

M>N a1

in agreement with the ideal continuum feedback case discussed in
[11].

Spatial Overstability

As the feedback gain at low frequencies is inereased above the
value used to control the growing wave, the jet remains stable over
a certain range of gain, and then becomes unstable in a new mode,
unrelated to the original one. This new mode is a spatial overstability
in which the feedback system overcompensates for the disturbance
detected at the sampling point. Viewed in the laboratory frame, this
disturbance occurs at zero frequency and has a wavelength of ap-
proximately two section lengths. The threshold gain for this in-
stability is shown in Fig. 3.

The position of the sampling point has a strong effect on the spa-
tial overstability, with the threshold gain decreasing as the sampling
point is moved toward the entrance of the station. This is to be
expected, since a sampling point near the entrance causes the feed-
back foree to be exerted downstream for a longer fraction of the
time the jet spends in the section, thus increasing the amount of
overcontrol.
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Resonant Instability

A third possible mode of spatial instability occurs because the
feedback loop exhibits a time lag on the order of the transit time of
the jet. A spatial instability of this type is called a resonant in-
stability since it occurs when operating near a pole of the response
[11]. The resonant instability, which occurs at a relatively high
frequency, is opposed by the tension of the jet, and the threshold
gain is therefore a strong function of «. The position of the sampling
point also affects this instability, since moving the pickup toward the
exit of the section increases the phase shift and lowers the thresh-
old gain for instability. A plot of the threshold gain for two values
of « with midpoint sampling (¢ = 1/2) shows the threshold gain
decreasing as N increases and also as « decreases (Fig. 4).

The Stable Region of Operation

So far, the various spatial instabilities have been discussed in-
dividually, and the separate criteria for stability of the usual growing
wave, the spatial overstability, and the resonant instability have
been formulated. To ensure complete control of the instability, the
operating point must lie in the stability regions of all three distur-
bances. This stable region can be determined by superposing the
stable regions of all three modes.

The combined stability eriteria for the case ¢ = 0.5 (midpoint
sampling) @ = 0.1 (Fig. 5) indicates that the stability for this case is
determined by the original growing wave and the resonant instability,
since the spatial overstability exhibits a higher threshold gain than
the resonant instability for all values of N.
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If the tension term «, is large, however, the threshold gain for
resonant instability is increased, while the other two unstable
modes are little affected. The combined stability diagram for a =
0.5 (Fig. 6) shows that the spatial overstability now limits the al-
lowed feedback gain over most of the range.

IV. DisctussIioN

Three types of spatial instability are possible on a convective wave
system with an infinite number of space-sampled feedback stations.
The usual growing wave and the resonant instability are similar to
instabilities which appear when the feedback system has a few sta-
tions. The spatial overstability, however, appears only when the
number of stations is large and may be the limiting factor for some
operating regimes. Despite these instabilities, a stable region of
operation was shown to exist for all of the cases studied.

The variety of ways in which instability may occur in this system
is due not only to the inherent instability in the uncontrolled system,
but also to the nature of the feedback system employed. All of the
results presented here are for the special case in which the sampling
point is located at the center of each section, and the measured
variable controls the force upstream (feedback) and downstream
(feed forward) of the sampling point. The search procedure showed
that if measurements were made much farther downstream, thus
emphasizing the feedback portion of the control system, then there
was no stable region of operation against the resonant instability.
Emphasizing the feed forward aspects, on the other hand, lends to
spatial overstability for all values of gain. Thus, a combination of
feedback and feed forward control appears to be needed to ensure
completely stable operation.

These results show the possibility of using a space-sampled feed-
back system to confrol a slowly growing amplifying wave on a very
large system. The feedback system was chosen for simplicity and
does not represent an optimum design for this particular instability.
One obvious improvement would be the incorporation of a low pass
filter in the feedback loop which would serve to suppress feedback
at the resonant frequency of the transfer funection. This would help
stabilize the jet against the resonant instability. Another possible
refinement is space tapering of the force application and sampling.
This would decrease the sensitivity of the system to both the spatial
overstability and the resonant instability by integrating over the
entire length of the section to detect the disturbance and by decreas-
ing the force applied far from the sampling point.
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