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although the  state trajectories,  in general, were different.. Each case ACKNOKLEDGNENT 

the numerical average of these 50 trials. In all cases the   ae ighhg c, F. Price. 
coefficients for the control effort {a] are unity, and t,he process 
noise variance is constant., but varies from case t.o case. REFERENCES 

was run 50 t.imes and the ensemble axrerages approximated The  author .+hes to acknom,le,-jge the  helpful disc,Esions of 

rtrumerical ResuUs 
The results of a seven st.age stochastic process are described. 

Quantitative results are displayed for a terminal  control problem, 
and t.he results of other simulations are discussed. 

Terminal Control: In  the termina! control problem, all st.ate 
weighting coefficients are  unity except the  last one 4 7  which is 100. 
This means, roughly, that t.he rms terminal  error is ten times more 
important  than  the  other quantit.ies  in the cost function. 

Fig. 2 shows the results when the measurements are taken  through 
a three level quantizer: the ensemble mean-square state  and ensemble 
average of the (approximate) conditional covariance of the  state  are 
plotted as a  function of time. For this case, the variance of t.he 
process noise is 0.2, and  the quantizer  switch  points  are at f 1. 

The most noticeable difference bet.ween the tmo control laws is 
that  the one-measurement control acts  to reduce the conditional 
covariance of the  state estimate. Note t.hat t.he ensemble average of 
the conditional covariance is about half the average of the condi- 
tional covariance for the open-loop control. The one-measurement 
cont,rol is able to reduce the conditional covariance by centering the 
conditional dist.ribut,ion of the measurement near the quantizer 
snitch point,, where a more accurate  measurement can be obtained. 
This strategy is reflected in the cu~?res for the mean-square value of 
the  state which st.ays in the neighborhood of 1.0 (the switch point.) 
for t,he one-measurement control but gradually goes to zero for the 
open-loop control. The control effort (not shown) for t.he one- 
measurement  control is higher, and  it requires a large control  action 
a t  t,he last application to bring the  state from the  vicinit- of the 
quantizer switch  point to t,he origin. 

The performance penalty of t,he open-loop-optimal feedback 
control  over the one-measurement-optimal feedback control is 17.3 
percent for this case. Other  simulations revealed t.hat the perfor- 
mance penalt.y ranged as high as 44 percent when observations were 
taken  through a t a o  level quantizer. 

Other Simulations: Cost  functions other  than  the terminal cont.ro1 
t,ype were simulated: t.he st,ate deviations were aeighted more 
heavily as time progressed, or else the weightings were constant. 
The performance advant,age of t.he onemeasurement. control was 
always less than 10 percent  in these cases. This arises from t.he fact 
that  the  onemeasurement control  tries to move t,he state around t.0 
gain information, but these  movements are restricted by the rela- 
tively  heavy weighting on the st.ate deviat.ions. 

Thus a qualitative assessment, at. least, for linear  systems and 
nonlinear measurements, is that. incorporating future measurements 
in the cont.ro1 comput.at.ions will yield the greatest ret,urn when the 
cost  function is such t,hat t.he state  and/or control is free to reduce 
uncertainty in the estimate. In other situations, the open-loop 
control is quite att.ractive, especially because of its compntational 
simp1icit.y. 

V.  CONCLUSIONS 
A new suboptimal stochast.ic control  algorithm is presented which 

incorporates future measurments into t.he control  computations. 
The two  limiting  forms of the algorithm are t.he well-known open- 
loop-optimal feedback control and  the  truly optimal  stochastic 
control. This concept can be extended t.0 simplify the computations 
for constrained cont.rols, nonlinear plants, and  nonquadratic cost 
criteria. A linear  system with quantized  measurements was simulated 
to compare t,he one-measurementcoptimal feedback cont.ro1 to the 
open-loopoptimal feedback cont,rol. The greatest  improvement over 
the open-loop algorit.hm occurs in  those situations where the cost 
function gives the cont,rol and  state some freedom to reduce the 
uncertainty in t.he d a t e  estimate. 
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Control of an Amplifying Wave 
on an Infinite Continuum 

JOSEPH &I. CROWLEY, MEJIBER, IEEE 

Abstract-Previous work on the space-sampled feedback control 
of continuum  instabilities in flowing systems  is extended. When 
the continuum over which control is desired  is  many wavelengths 
long, it  is often convenient to construct the control system of many 
sampling stations, each approximately one wavelength in size. The 
stability of such a  system is discussed, and a new type of instability 
is found which does  not appear  when the  system  is small in terms of a 
wavelength. 

Many  system described by wave equations,  such as, boundary 
layers [ 11, confined fusion  plasmas [2], and liquid jets [3], are 
subject, to various types of instabilit.ies under their  normal  operating 
conditions. Since these  instabilities are often  destructive,  much 
effort has been expended in devising methods for improving the 
stability of these  systems  without sacri6cing operating performance. 
A promising approach to  this probIem is spacesampled feedback 
control, in which the disturbances leading to instability  are sampled 
over the  entire  spatial  exteut of the system, and spatially distributed 
forces are applied to  attenuate these disburbances. 

Continuum  systems which satisfy wave equations may be de- 
scribed as spacelike or timelike 141. In  a spacelike system, waves 
may propagate in  all directions, so t.hat  an  instability once started, 
will eventually  spread t.hroughout, the entire  system.  Such  insta- 
bilities are often called absolute or nonconvective. The feedback 
stabilization of these instabilit.ies in elect.romechanica1 systems and 
in plasmas has recently been reported  in some detail [5]-[10]. 

In  a timelike system, however, waves can propagate only in pre- 
ferred directions. Physically, this  situation usually arises m-hen there 
is mechanical motion at  speeds greater  than  the velocity of wave 
propagation. Common examples are supersonic flight. and traveling 
Tave amplifiers. 

The instabilities which arise in timelike systems are called amplify- 
ing waves or convective instabilities. A previous paper [ll] discussed 
the feedback cont.ro1 of an amplifying wave  over  a short dist.ance, 
and reported an experiment,al attenuation of a  disturbance which 
normally exhibits significant growth  over a dist.ance of a fea  wave- 
lengths. In  many cases of practical  interest, however, significant 
growth of the instability occurs only on a  system which k many 
wavelengths long. A successful control system requires that a 
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SGMFLING POINT 

FEEDBACK CIRCUIT 

CORRECTIVE FORCE 

Fig. 1. Schematic  representation of single  sampling  station  in  which  distur- 

section. 
bance measured at single  point  controls  corrective  force  over  entire  length of 

band of spatial frequencies be measurable and cont.rollable. One 
way to sat.isfy this condition is to make each section shorter than a 
single wave length. Since this  approach requires a large  number of 
sampling stat.ions, the present  paper  extends t,he results of [ll] to 
cover space-sampled feedback on a  system  many wavelengths in 
extent.. 

I. SYSTEX EQGATIONS 
The system  studied in [l l] ,  a liquid jet. subject  to a  radial 

electric field, was chosen because it could be modeled quite well by a 
relatively simple wave equat.ion which is representative of most time- 
like system,  and because it could be easily produced in the lab- 
oratory. 

In  the absence of feedback, the liquid jet can be described by  the 
nondimensional equation [l l]  

The  term on the left accounts for the  inertia of t.he jet while the 
terms on the right  represent the restoring force of surface tension 
(d) and a dest.abilizing force proportional to displacement, due  to  the 
electric pressure ( B )  on the surface. The quantit,y 6 here  represents 
the amplit.ude of the  disturbance on t.he jet, and z and t are real 
space and t.ime variables 

If the velocity of the  jet is greater  than  the wave propagation 
ve1ocit.y (a < l), this system  is timelike and exhibits  amplifying 
waves which have been discussed elsewhere in det.ail [3], 1121. In 
t,he rrork reported  in [ I l l ,  these amplifying waves were controlled 
by measuring the dist.urbances at discrete  points and applying a 
uniform correcting force to  the  jet in the neighborhood of each of 
t.hese points. The feedback  system can, therefore, be treated as a 
series of independent sampling sect.ions which are individually 
represented by Fig. 1. 

If the sampled feedback force is included, the nondimensional 
equat.ion which describes t.he system within each section is [l l]  

where N is t.he feedback gain, and a is the sampling point. 
Since this is a one-dimensional timelike system,  all  disturbances 

propagate in only one direct.ion (the direction in which the  jet moves 
downstream). The boundary condit,ions which influence t.he dis- 
turbance  must therefore be applied at  the  upstream end of each 
sampling section, because disturbances applied at   the  downstream 
side would propagate farther downstream and never convey infor- 
mation into  the section. These conditions are analogous to initial 
condit.ions which aPiect the behavior of the system only for times 
after t.he time of application. The disturbance  generated by these 
entrance conditions is 6hen carried through  the section to  the down- 
stream end --here it serves as  the upstream  boundary condition for 
the succeeding section. The system is convect,ively unstable if 

the magnitude of t.he disturbance grows ait.hout bound as it. is swept 
downstream from sect.ion to section; however, t.he magnitude at 
any fixed point remains bounded. 

The sinusoidal steady  state  disturbance at the  outlet of t.he nth 
section is given by successive solut.ions of t,he wave  equation [l l]  in 
terms of t.he initial  disturbance 

60 = 6(x = 0,t) (3) 

and its  spatial derivat.ive 

60’ = 
= 0,t) 
6X 

as 

lii = dN(1 - a2) - (aw)*:(l - a2). 

11. THE STABILITY CRITERION 
The  nature of the response far from the point. of excitation can 

be determined by considering t,he limit of (5) as n becomes very 
large. If the response is bounded, this limit, must  be bounded. The 
nature of the limiting response can be determined most easily by 
transforming the t.ransfer matrix t,o its canonical form 

where h satisfies the equa.t.ion 

If the magnitude of either eigenvalue is greater than unity, the 
limiting response, which is proportional to  the eigenvalues raised to 
a  very large power,  will be unbounded. The condition for spat.ial 
stabilit,y of the  jet is t,hen 
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A special case is the uncontrolled jet ($1 = 0) excited by a constant 
disturbance. The response matrin  under t.hese conditions is 

[ 
cosh kc sinh k i /k i  

ki sinh kt cash ki 1. 
In canonical form, this matrix may  be  written 

This represents the growing and decaying waves normally found on 
t.he jet.. For a real value of ki, one of the eigenvalues will be greater 
than  unity, indicating spatial instability. Thus this new criterion is 
identical to t,he usual stability criterion for timelike systems based 
on the dispersion relation of t,he free waves, and given by 181, 191 

ki = 0. (8 )  

111. SPATIAL INSTABILITIES TITH SAMPLED FEEDBACK 
To delimit. the st.able operating range, we choose appropriate 

values of the  parameters a, a, N ,  and X ,  and  evaluate  the eigen- 
values of t.he response matrix for all frequencies. If neither eigen- 
value attains a magnit.ude greater  than  unity,  the chosen operating 
point lies in the  stable region. By repeating this procedure at different 
operating points, a stable operating region in the M-X plane  can be 
mapped out. for each value of a and a. 

Amplifying Wave 

The preceding search procedure has revealed three  types of spatid 
instabilities on t.he feedback controlled jet.  The first  is the  groaing 
wave normally present  on the  jet.  The growth  rat,e of this disturbance 
is largest a t  low frequencies, and vanishes BS the frequency is raised 
above a definite cutoff frequency given by 

dN(1 - CY.". 
wco = (9) 

a 

To control this instability, the feedback system must furnish a 
rest.oring force over the frequency range 

0 < 0 < wco (10) 

with sufficient amplitude to counteract  t,he  growth. A plot of the 
feedback gain needed to overcome the growing wave for different 
growth rates (Fig. 2 )  shows t,hat  the condition for &ability is very 
nearly 

M > N (11) 

in agreement wit,h the ideal cont.inuum feedback c w  discussed in 
1111. 

Spatial Overslability 
As the feedback gain a t  low frequencies is increased above t.he 

value used to control the growing wave, the  jet remains stable over 
a certain  range of gain, and  then becomes unst.ab1e in a new mode, 
unrelated to t.he original one. This new mode is a spat.id  overstabfit,y 
in which t.he feedback system overcompensates for the  disturbance 
detected at the sampling  point. Viewed in the  laboraton. frame, this 
disturbance occurs a t  zero frequency and  has a wavelength of a p  
proximately two section 1engt.h.  The threshold gain for this in- 
stability is shown in Fig. 3. 

The posit.ion of the sampling point  has a stxong effect. on the spa- 
hial overstability, x4t.h the threshold gain decreasing as the sampling 
point. is moved toward the ent,rance of the  station.  This is to be 
expected, since a sampling point near  the ent.rance causes t.he feed- 
back force to  be exert,ed downstream for a longer fract,ion of the 
time  the  jet spends in t,he section, thus increasing the  amount of 
overcontrol. 

I $13 LIAPLIFYING WAVE 

i 
10 20 30 4 0  

N (destabilizing  force ) 

Fig. 2. hIinirnum feedback  gain is needed to control amplifying r a v e ,  
(a = 0.1, n = 0.5). 

= I  

N (deslobilizing  force) 

Fig. 3. Excessire feedback  gain  causes  spatial  overst,ability (a = 0.1, a = 0.5). 

3 0  
RESONAUT  INSTLEILITY 

FOR  BOTH CASES 

n,,t 0 \ 
QESONANT  STAEll iTY FOR Q = O  I \ 
RESONANT  IUSTABILITY  FOR a = O  5 
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Fig. 5. Stable operation region when t.ension force is Eeak (a = 0.1). 
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0 

‘1 I d e m b h l i r g  force) 

Fig. 6. Sralrle operation region when tension force is large (a = 0.5). 

Resonant Zmtability 

A third possible mode of spatial inst,ability occurs because the 
feedback loop exhibits a time lag on the order of the  transit  time of 
the  jet. A spatial inst.abilit.y of this type is called a resonant. in- 
stability since it occurs when operat.ing near  a pole of the response 
Ill]. The resonant. inst,ability, which occurs a t  a relatively high 
frequency, is opposed by  the tension of the jet, and  the threshold 
gain is t,herefore a  strong  function of CY. The position of the sampling 
point also affects this instability, since moving the pickup toward t.he 
exit of t,he section increases the phase  shift and lowers the thresh- 
old gain for instability. A plot of the t.hreshold gain for two values 
of CY with  midpoint sampling (a, = 1/2) shows the threshold gain 
decreasing as S increases and also as CY decreses (Fig. 4). 

The Siable Region of Operation 
So far, the various spatial  inshbilities have been discussed in- 

dividually, and  the  separate criteria for stability of the usual growing 
wave, the spatial  overstability,  and t.he resonant inst.ability have 
been formulated. To ensure complete control of the instabilit.y, the 
operating point must lie in t.he st.ability regions of all three distur- 
bances. This  stable region can be determined by superposing the 
stable regions of all three modes. 

The combined stability criteria for the czse a. = 0.5 (midpoint 
sampling) 01 = 0.1 (Fig. .5) indicates that t.he stability for t,hk case is 
determined by t.he original growing wave and  the resonant instabilit.y, 
since the spatial  overstability  exhibits  a higher threshold gain than 
the resonant instabi1it.y for all values of IT. 

If the tension term 01, is large, however, the threshold gain for 
resonant  instabilit,y is increased, while the  other two unst.able 
modes are  little affected. The combined st.ability diagram for CY = 
0.5 (Fig. 6) shows that.  the  spatial overstability now limits the al- 
lowed feedback gain over most of the range. 

IV. DISCCSSION 
Three  types of spatial instability are possible on a convective wave 

system wit.h an   i t f i i t e  number of space-sampled feedback stat.ions. 
The usual growing wave and  the resonant  instability are similar to 
instabilities which appear when t.he feedback system has a few sta- 
tions. The  spatial overstability, however, appears only when the 
number of stations is large and may be t.he limiting  factor for some 
operating re,&=. Despite  these instabilities, a stable region of 
operation was shown to exist for all of the cases studied. 

The  variety of ways in which instability may occur in this system 
is due  not only to  the inherent  instability in the uncontrolled system, 
but. also to t.he nature of the feedback system employed. All of the 
results  presented  here are for t.he special case in which the sampling 
point. is located at the center of each section, and  the measured 
variable cont,rols the force upst.ream (feedback) and downstream 
(feed fomard) of t,he sampling  point. The search procedure showed 
that. if measurements were made much farther downstream, thus 
emphasizing the feedback portion of the control system, then  there 
was no stable region of operat.ion against t,he resonant instabilit.y. 
Emphasizing t,he feed forward aspects, on t,he other hand, lends to 
spatial overstability for all  values of gain. Thus, a  combination of 
feedback and feed forward cont.ro1 appears to be needed to ensure 
complet.ely stable operation. 

These  results show the possibility of using a space-sampled feed- 
back system to control  a slowly growing amplifying wave on a very 
large system. The feedback system was chosen for simplicity and 
does not represent an optimum design for this particular instability. 
One obvious improvement, mould be the incorporation of a loa pass 
filter in the feedback loop which would serve t.o suppress feedback 
a t  the resonant frequency of t.he transfer funct,ion. This mould help 
stabilize the  jet against the resonant  instability.  Another possible 
refinement is space  tapering of the force application and sampling. 
This would decrease t.he sensitivit.y of the system to b0t.h the  spatial 
overstabilit,y and t.he resonant  instability by integrating  over the 
ent.ire length of t.he section to  detect  the  disturbance  and  by decreas- 
ing the force applied far from the sampling point.. 
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